

Designing Artificial Minds

Harri Valpola

Computational neuroscience group

Laboratory of computational engineering

Helsinki University of Technology

http://www.lce.hut.fi/~harri/

"The great end of life is not knowledge but action"

—Thomas Henry Huxley (1825-1895)

Sea Squirts — Our Distant Cousins

- Sea-squirts are common marine animals
- Two stages of development: larva and adult
- Larvae look very much like tadpoles

Picture:

http://www.jgi.doe.gov/News/ciona_4panel.jpg

No Movement → No Brain

Picture:

http://www.gulfspecimen.org/images/LeatherySeaSquirt.jpg

Smooth, Elegant, Skillful

Picture:

http://www.africanbushsafaris.com/fotos%20touren/Oryx.jpg

Picture:

http://www.ebroadcast.com.au/blahdocs/uploads/tiger_running_sml_2784.jpg

Evolution of the Motor System

- Spinal cord: "simple" reflexes and rhythmic movement
- Brain stem: more complex reflexes
- Cerebellum / midbrain structures: complex motor coordination
- Basal ganglia: action selection
- Hippocampal formation: navigation
- Neocortex: integration and planning

Methods

- Synthetic approach: learning by building
- Neural network simulations
- Real and simulated robots

Early Motor System

- Spinal cord: "simple" reflexes and rhythmic movement
- Brain stem: more complex reflexes
- Cerebellum / midbrain structures: complex motor coordination
- Basal ganglia: action selection
- Hippocampal formation: navigation
- Neocortex: integration and planning

Prediction and Anticipation

Adaptive Motor Control Based on a Cerebellar Model

Prediction and Anticipation

with a ball

Self-Supervised Learning in Control

- Corrections are made by a large number of "reflexes" (spinal cord, brain stem, cortex / basal ganglia).
- Cerebellar system learns to control using the reflexes as teaching signals.

Picture of cerebellar system

Reflexes

Stretch reflex

Opto-kinetic reflex

Picture:

http://www.inma.ucl.ac.be/EYELAB/neurophysio/perception_action/vestibular_optokinetic_reflex_fichiers/image004.jpg

Picture:

http://www.cs.stir.ac.uk/courses/31YF/Notes/musstr.jpg

Robot "Reflex"

The Cerebellar System

Long-Term Depression (LTD) Guided by Climbing Fibres

Vestibulo-Ocular Reflex

Picture:

http://www.uq.edu.au/nuq/jack/VOR.jpg

System-Level Computational Neuroscience

Questions to be answered:

- What kind of components are needed for a cognitive architecture?
- What are different algorithms good for and how they can be combined?

The brain is a good solution to these questions → Try to understand its algorithms on system level (level of behaviour)

"Without knowledge action is useless and action without knowledge is futile"

—Abu Bakr (c. 573-634)

Components for a Cognitive System

Basal ganglia: selection, reinforcement learning (trial-anderror learning)

Hippocampal formation: one-shot learning, navigation, episodic memory

Neocortex:

- Represents the state of the world including oneself
- Invariant representations, concepts
- Attention / selection (both sensory and motor)
- Simulation of potential worlds = planning and thinking
- Relations and other structured representations (akin to symbolic AI)

Neocortex

- A hierarchy of feature maps: increasing levels of abstraction
- Bottom-up and topdown/lateral inputs treated differently
- Local competition
- Long-range reciprocal excitatory connections

Picture:

http://www.pigeon.psy.tufts.edu/avc/husband/images/Isocrtx.gif

Representations for Natural Images by Independent Component Analysis (ICA)

http://www.cis.hut.fi/projects/ica/imageica/

- ICA is an example of unsupervised learning.
- Can learn something like
 V1 simple cells.

Invariant features

 Group simple features into complex in a hierarchical model.

Picture:

http://cs.felk.cvut.cz/~neurony/neocog/en/images/figure3-1.gif

"Complex Cells" from Images

Abstractions and Meaning

Abstractions and Meaning

 Once we have motor output, we can learn which information is important and meaningful

Relevance to Human Enhancement

How about mind prostheses? New senses (like web-sense)?

Knowing how the brain works would certainly be useful for prostheses, but for healthy persons...

- Input to the brain is easiest to deliver through existing senses — content matters, not the channel
- Output from the brain through motor system is more limited → implanted electrodes might surpass this capacity
- I expect intelligent tools to be far more common than prosthetic devices for a long time, but this doesn't mean their societal impact would be any smaller

Brain is a good solution for an **engineering** problem

Neuroscience

Picture:

http://britton.disted.camosun.bc.ca/escher/drawing_hands.jpg

Technology

KIITOS! THANK YOU!

